
Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

88 

Analyzing Algorithms

11 Analyzing Algorithms

11.1 Introduction

We have so far been developing algorithms in implementing ADTs without worrying too much about 

how good the algorithms are, except perhaps to point out in a vague way that certain algorithms will be 

more or less eicient than others. We have not considered in any rigorous and careful way how eicient 

our algorithms are in terms of how much work they need to do and how much memory they consume; 

we have not done a careful algorithm analysis.

Algorithm analysis: he process of determining, as precisely as possible, how much of various 

resources (such as time and memory) an algorithm consumes when it executes.

In this chapter we will lay out an approach for analyzing algorithms and demonstrate how to use it on 

several simple algorithms. We will mainly be concerned with analyzing the amount of work done by 

algorithms; occasionally we will consider how much memory they consume as well.

 

  

 

                . 

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

89 

Analyzing Algorithms

11.2 Measuring the Amount of Work Done

An obvious measure of the amount of work done by an algorithm is the amount of time the algorithm 

takes to do some task. Before we get out our stopwatches, however, we need to consider several problems 

with this approach.

To measure how much time an algorithm takes to run, we must code it up in a program. his introduces 

the following diiculties:

•	 A program must be written in a programming language. How can we know that the 

language or its compiler or interpreter have not introduced some factors that artiicially 

increase or decrease the running time of the algorithm?

•	 he program must run on a machine under the control of an operating system. Machines 

difer in their speed and capacity, and operating systems may introduce delays; other 

processes running on the machine may also interfere with program timings.

•	 Programs must be written by programmers; some programmers write very fast code and 

others write slower code.

Without inding some way to eliminate these confounding factors, we cannot have trustworthy 

measurements of the amount of work done by algorithms—we will only have measurements of the 

running times of various programs written by particular programmers in particular languages run on 

certain machines with certain operating systems supporting particular loads.

In response to these diiculties, we begin by abandoning direct time measurements of algorithms 

altogether, instead focussing on algorithms in abstraction from their realization in programs written 

by programmers to run on particular machines running certain operating systems. his immediately 

eliminates most of the problems we have considered, but it leads to the question: if we can’t measure 

time, what can we measure?

Another way to think about the amount of work done by an algorithm is to consider how many operations 

the algorithm executes. For example, consider the subtraction algorithm that elementary children learn. 

he input comes in the form of two numbers written one above the other. he algorithm begins by 

checking whether the value in the units column of the bottom number is greater than the value in the 

units column of the top number (a comparison operation). If the bottom number is greater, a borrow 

is made from the tens column of the top number (a borrow operation). hen the values are subtracted 

and the result written down beneath the bottom number (a subtraction operation). hese steps are 

repeated for the tens column, then the hundreds column, and so forth, until the entire top number has 

been processed. For example, subtracting 284 from 305 requires three comparisons, one borrow, and 

three subtractions, for a total of seven operations.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

90 

Analyzing Algorithms

In counting the number of operations required to do this task, you probably noticed that the number 

of operations is related to the size of the problem: subtracting three digit numbers requires between six 

and eight operations (three comparison, three subtractions, and zero to two borrows), while subtracting 

nine digit numbers requires between 18 and 26 operations (nine comparisons, nine subtractions, and 

zero to eight borrows). In general, for n digit numbers, between 2n and 3n-1 operations are required.

How did the algorithm analysis we just did work? We simply igured out how many operations were 

done in terms of the size of the input to the algorithm. We will adopt this general approach for deriving 

measure of work done by an algorithm:

To analyze the amount of work done by an algorithm, produce measures that express a count of 

the operations done by an algorithm as a function of the size of the input to the algorithm.

11.3 The Size of the Input

How to specify the size of the input to an algorithm is usually fairly obvious. For example, the size of 

the input to an algorithm that searches a list will be the size of the list, because it is obvious that the 

size of the list, as opposed to the type of its contents, or some other characteristic, is what determines 

how much work an algorithm to search it will do. Likewise for algorithms to sort a list. An algorithm to 

raise b to the power k (for some constant b) obviously depends on k for the amount of work it will do.

11.4 Which Operations to Count

In most cases, certain operations are done far more oten than others by an algorithm. For example, in 

searching and sorting algorithms, although some initial assignment and arithmetic operations are done, 

the operations that are done by far the most oten are loop control variable increments, loop control 

variable comparisons, and key comparisons. hese are (usually) each done approximately the same 

number of times, so we can simply count key comparisons as a stand-in for the others. hus counts of 

key comparisons are traditionally used as the measure of work done by searching and sorting algorithms.

his technique is also part of the standard approach to analyzing algorithms: one or perhaps two basic 

operations are identiied and counted as a measure of the amount of work done.

Basic operation: An operation fundamental to an algorithm used to measure the amount of 

work done by the algorithm.

As we will see when we consider function growth rates, not counting initialization and bookkeeping 

operations (like loop control variable incrementing and comparison operations), does not afect the 

overall eiciency classiication of an algorithm.

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

91 

Analyzing Algorithms

11.5 Best, Worst, and Average Case Complexity

Algorithms don’t always do the same number of operations on every input of a certain size. For example, 

consider the following algorithm to search an array for a certain value.

def ind(key, array)
  array.each { |e| return true if key == e }

  return false

end

Figure 1: An Array Searching Algorithm

he measure of the size of the input is the array size, which we will label n. Let us count the number 

of comparisons between the key and the array elements made in the body of the loop. If the key is 

the very irst element of the array, then the number of comparisons is only one; this is the best case 

complexity. We use B(n) to designate the best case complexity of an algorithm on input of size n, so in 

this case B(n) = 1.

In contrast, suppose that the key is not present in the array at all, or is the last element in the array. 

hen exactly n comparisons will be made; this is the worst case complexity, which we designate W(n), 

so for this algorithm, W(n) = n.

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

92 

Analyzing Algorithms

Sometimes the key will be in the array, and sometimes it will not. When it is in the array, it may be 

at any of its n locations. he number of operations done by the algorithm depends on which of these 

possibilities obtains. Oten we would like to characterize the behavior of an algorithm over a wide range 

of possible inputs, thus producing a measure of its average case complexity, which we designate A(n). 

he diiculty is that it is oten not clear what constitutes an “average” case. Generally an algorithm 

analyst makes some reasonable assumptions and then goes on to derive a measure for the average case 

complexity. For example, suppose we assume that the key is in the array, and that it is equally likely to 

be at any of the n array locations. hen the probability that it is in position i, for 0 ≤ i < n, is 1/n. If the 

key is at location zero, then the number of comparisons is one; if it is at location one, then the number 

of comparisons is two; in general, if the key is at position i, then the number of comparisons is i+1. 

Hence the average number of comparisons is given by the following equation.

A(n) = ∑
i=0 to n-1

 1/n ∙ (i+1) = 1/n ∙ ∑
i=1 to n

 i

You may recall from discrete mathematics that the sum of the irst n natural numbers is n(n+1)/2, so 

A(n) = (n+1)/2. In other words, if the key is in the array and is equally likely to be in any location, then 

on average the algorithm looks at about half the array elements before inding it, which makes sense.

Lets consider what happens when we alter our assumptions about the average case. Suppose that the key 

is not in the array half the time, but when it is in the array, it is equally likely to be at any location. hen 

the probability that the key is at location i is 1/2 ∙ 1/n = 1/2n. In this case, our equation for A(n) is the 

sum of the probability that the key is not in the list (1/2) times the number of comparisons made when 

the key is not in the list (n), and the sum of the product of the probability that the key is in location i 

times the number of comparisons made when it is in location i:

A(n) = n/2 + ∑
i=0 to n-1

 1/2n ∙ (i+1) = n/2 + 1/2n ∙ ∑
i=1 to n

 i = n/2 + (n+1)/4 = (3n+1)/4

In other words, if the key is not in the array half the time, but when it is in the array it is equally likely 

to be in any location, then the algorithm looks about three-quarters of the way through the array on 

average. Said another way, it looks all the way through the array half the time (when the key is absent), 

and half way through the array half the time (when the key is present), so overall it looks about three 

quarters of the way through the array. his makes sense too.

We have now completed an analysis of the algorithm above, which is called sequential search.

Sequential search: An algorithm that looks through a list from beginning to end for a key, 

stopping when it inds the key.

Sometimes a sequential search returns the index of the key in the list, and -1 or nil if the key is not 

present—the index() operation in our List interface is intended to embody such a version of the 

sequential search algorithm.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

93 

Analyzing Algorithms

Not every algorithm has behavior that difers based on the content of its inputs—some algorithms behave 

the same on inputs of size n in all cases. For example, consider the algorithm in Figure 2.

def max(array)

  return nil if array.empty?

  result = array[0]

  1.upto(array.size-1).each do | index |

    result = array[index] if result < array[index]

  end

  return result

end

Figure 2: Maximum-Finding Algorithm

his algorithm, the maximum-inding algorithm, always examines every element of the array ater the 

irst (as it must, because the maximum value could be in any location). Hence on an input of size n (the 

array size), it always makes n-1 comparisons (the basic operation we are counting). he worst, best, and 

average case complexity of this algorithm are all the same. he every-case complexity of an algorithm 

is a the number of basic operations performed by the algorithm when it does the same number of 

basic operations on all inputs of size n. We will use C(n) to designate every-case complexity, so for the 

maximum-inding algorithm, C(n) = n-1.

11.6 Summary and Conclusion

We deine the various kinds of complexity we have discussed as follows.

Computational complexity: he time (and perhaps the space) requirements of an algorithm.

Every-case complexity C(n): he number of basic operations performed by an algorithm as a 

function of the size of its input n when this value is the same for any input of size n.

Worst case complexity W(n): he maximum number of basic operations performed by an 

algorithm for any input of size n.

Best case complexity B(n): he minimum number of basic operations performed by an 

algorithm for any input of size n.

Average case complexity A(n): he average number of basic operations performed by an 

algorithm for all inputs of size n, given assumptions about the characteristics of inputs of size n.

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

94 

Analyzing Algorithms

We can summarize the process for analyzing an algorithm as follows:

1. Choose a measure for the size of the input.

2. Choose a basic operation to count.

3. Determine whether the algorithm has diferent complexity for various inputs of size n; if so, 

then derive measures for B(n), W(n), and A(n) as functions of the size of the input; if not, 

then derive a measure for C(n) as a function of the size of the input.

We will consider how to do step 3 in more detail later.

11.7 Review Questions

1. Give three reasons why timing programs is insuicient to determine how much work an 

algorithm does.

2. How is a measure of the size of the input to an algorithm determined?

3. How are basic operations chosen?

4. Why is it sometimes necessary to distinguish the best, worst and average case complexities 

of algorithms?

5. Does best case complexity have anything to do with applying an algorithm to smaller 

inputs?

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE

PROGRAM 2014

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

95 

Analyzing Algorithms

11.8 Exercises

1. Determine measures of the size of the input and suggest basic operations for analyzing 

algorithms to do the following tasks.

a) Finding the average value in a list of numbers.

b) Finding the number of 0s in a matrix.

c) Searching a text for a string.

d) Finding the shortest path between two nodes in a network.

e) Finding a way to color the countries in a map so that no adjacent countries are the same 

color.

2. Write a Ruby sequential search method that inds the index of a key in an array.

3. Consider the Ruby code below.

def max_char_sequence(string)

  return 0 if string.empty?

  max_len = 0

  this_len = 1

  last_char = nil

  string.each_char do | this_char |

    if this_char == last_char

      this_len += 1 

    else

      max_len = this_len if max_len < this_len

      this_len = 1

    end

    last_char = this_char

  end

  return (max_len < this_len) ? this_len : max_len

end

a) What does this algorithm do?

b) In analyzing this algorithm, what would be a good measure of input size?

c) What would be a good choice of basic operation?

d) Does this algorithm behave diferently for diferent inputs of size n?

e) What are the best and worst case complexities of this algorithm?

4. Compute the average case complexity of sequential search under the assumption that the 

likelihood that the key is in the list is p (and hence the likelihood that it is not in the list is 

1-p), and that if in the list, the key is equally likely to be at any location.

http://bookboon.com/


Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

96 

Analyzing Algorithms

11.9 Review Question Answers

1. Timing depends on actual programs running on actual machines. he speed of a real 

program depends on the skill of the programmer, the language the program is written 

in, the eiciency of the code generated by the compiler or the eiciency of program 

interpretation, the speed of the hardware, and the ability of the operating system to 

accurately measure the CPU time consumed by the program. All of these are confounding 

factors that make it very diicult to evaluate algorithms by timing real programs.

2. he algorithm analyst must choose a measure that relects aspects of the input that most 

inluence the behavior of the algorithm. Fortunately, this is usually not hard to do.

3. he algorithm analyst must choose one or more operations that are done most oten during 

execution of the algorithm. Generally, basic operations will be those used repeatedly in 

inner loops. Oten several operations will be done roughly the same number of times; in 

such cases, only one operation need be counted (for reasons to be explained in the next 

chapter about function growth rates).

4. Algorithms that behave diferently depending on the composition of inputs of size n can do 

dramatically diferent amounts of work, as we saw in the example of sequential search. In 

such cases, a single value is not suicient to characterize an algorithm’s behavior, and so we 

distinguish best, worst, and average case complexities to relect these diferences.

5. Best case complexity has to do with the behavior of an algorithm for inputs of a given size, 

not with behavior as the size of the input varies. he complexity functions we produce to 

count basic operations are already functions of the size of the input. Best, worst, average, 

and every-case behavior are about diferences in behavior given input of a certain size.

http://bookboon.com/

